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A Green's function method has been used to obtain an expression

S

for the mean free path of a Rayleigh wave propagating along a planar

free surface of an isotropic elastic continuum and scattered by a
mass defect. The change in density associated with the mass

defect is assumed to be Anb(i-?o) where ;o is the position vector

of the defect and Am is the mass change. The Green's function is
evaluated for an isotropic elastic continuum with a stress~free
planar surface. Using thil Green's function, the continuum equations

of motion are formally solved for the particle displacement of the

scattered wave in terms of the particle displacement of the
incident wave. The Poynting vectors are then calculated for the
incident wave and the scattered wave. Explicit results.for the
scattered wave Poynting vector are obtained in the asymptotic

limit of large distance from the mass defect. The mean free path

i

is then obtained from the ratio of the magnitudes of the incident
Poynting vector and the asymptotic scattered Poynting vector. The

results are compared with those of other workers.
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I. Introduction

The development of electronic devices using surface elastic
waves has stimulateé considerable interest in the fundamental
properties of these waves. Important among these properties is
the rate of scattering of surface waves due to their interaction
with various types of defects and with other phonons. The scatter-
ing rate can have a significant influence on the performance of
devices.

Theoretical investigations of the anharmonic scattering of
Rayleigh waves have been carried out by a number of workers. -

(1)

Using a Green's function procedure, Maradudin and Mills treated

the isotropic case using a lattice dynamical model and found that
the damping constant is proportional to wRT4 at low temperatures,
where wp is the Rayleigh wave frequency and T is the absolute

temperature. These results were extended to anisotropic crystals

4 @

by King and Shear On the experimental side the wRT4 depen-

dence was .verified by Salzmann, Plieninger, and Drannfeld(3) for
several surfaces of quartz.
The effect of defects on the damping of Rayleigh waves was

(4)

investigated theoretically by Steg and Klemens for the case of

a point-mass defect having a mass change Am. They used perturba-
tion theory and found that the relaxation rate is proportional to

(5,6) re-examined the problem

(Am)zwns. Somewhat later, Sakuma

using the Chew-Low scattering formalism and the complete set of " Section £
Sectien ()

normal modes for a semi-infinite isotropic elastic medium con- 0

(M Sakuma confirmed the mns dependence of the ...

structed by Ezawa.
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scattering rate at sufficiently low frequencies, but in addition,

found resonance structure for a defect with a lighter mass than
the host atoms. This iork has been extended to the case of ran-
dom density fluctuations on the surface by Nakayama and Sakuna.(s)
In the present paper the Green's functions for a semi- |

infinite isotropic elastic continuum with a stress-free planar
(9)

surface are used to calculate the inverse attenuation length ‘
of a Rayleigh wave scattered by point-mass defects. In Section II
formal expressions are derived for the amplitude of the scattered
wave. In Section III these expressions are evaluated explicitly
in the asymptotic limit of large distance from the mass defect.

In Section IV the inverse attenuation length is evaluated. Nu-
merical results are presented in Section V. A discussion and
comparison with previous work are given in Section VI. As we

shall see, our results concerning the resonance structure differ f

significantly from those of Sakuma.
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II. Scattering of a Rayleigh Wave by a Mass Defect

In the presence of a mass defect situated at the point
§° - (0,0,xoa) in a semi-infinite, isotropic, elastic medium occu-
pying the half-space x3>'0, the equations of motion of the medium

can be written in the form

2 ?3C du -]
-] aguVv
-p . BHE B - -S_EE_ ==+ T ¢ s-—;E-
atﬂ (-] BuV xa axv Y aBuyv xs X,
= p 2L (X,t) 22
P L e )y, = am 8(x-X) Btz ™ : (2.1)

where ua(i,t) is the o Cartesian component of the displacement
field at the point ; at the time t, p is the mass density of the
medium, and Am is the increase in the mass of the medium due to
the introduction of the defect. In writing Eq. (1) we have

assumed that the elastic moduli {anuv(Q)} are position dependent

and are given by

pry
C (x) = G(xs) (o)

aBuv (2.2)

aguyv ’

where the {C are the usual, position-independent elastic

aBu V}
moduli of the medium, and 6(x3) is the Heaviside unit step function.

We now introduce a Green's function Gb (i,ﬁ;t- t’) as the

B

solution of the equation

DLy, Rt) G G E t-t!) =8, 0@-2) bt-t) ,  (2.3)

subject to outgoing wave or exponentially decaying wave conditions

as 83 - ®,




In terms of this function we can rewrite Eq. (2.1) as an

integral equation:

u(x t)-u(O)(x t)+ EIdedtG (X y X ',t-t')x

2
-» - ) 2 '
X 6(x'-xo) ;:73 ua(x',t P (2.4)

where 3(°)(§,t) is a solution of the corresponding homogeneous

equation,

z L,u('::,t)u:o)(x e (2.5)

and in the present context represents a Rayleigh wave propa-

gating along the surface X3 = 0 of the semi-infinite elastic

medium.
With the Fourier decompositions
uc(§,t) - um('ﬁ,m)e.mt - u§°)(§,t) - u§°)(§,w)e-imt (2.6)
G @' st-t) = [ $ g @2 ;met0(E-tD 2.7)

d"k .y ¢
Ly otk """*")z,a(?:.mxaxé) (2.8)

_where x. - (x1,x2,0) and ﬁu - (k1 2,0), we can rewrite Eq. {(4)
- : .

a(x W3 (2.9)

u, x,0) = u(°)(x.W) - A—? p(x x HUD M

E
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] = To solve Eq. (2.9) we set x = ;o and use the fact, established
in the Appendix, that Gaa(io,i.o;u) is a diagonal matrix. In this
way we obtain the equation

;u)ua(io,m) (2.10)

2
“a(*o"”) - uo(,O)(;o.w).- AJ;'-‘!'— Gaa(io’io

with the solution

\la(O) (}O W )

* .
ua(xo,m) = Ammz P (2.11)
1+ i Guu(xo,xo;w)

When we substitute this result into the right hand side of Eq.
(2.9), we find that the amplitude of the scattered displacement
field is given by

W @) = u,Gw) - ul® @
2 .
- AN 2.3 ; 2 (@) 2
5— v Gap (X:Xgiw) T, (xgw) u " (xy W), (2.12)

where the scattering matrix is given by

8 : 8 :
x - ap ap
Taa(xo,m.) sz o = Dc(m) . (2.13)
1 + S5 Gyg (XX 5w)

For the system under consideration it is also the case that the

nonzero elements of this matrix bbey the relations Tll(;o yWw) =
-» -»

'l‘zz(xo,m) * T33(xo,w). With the aid of Eq. (2.8), the scattered

field takes the form

i
A hsm——




(.)(x ) _; I d k eiﬁ“ *n E_‘_gjiklﬂ‘xaxM) (O)(x ) .
1

4 D (x W)

(2.14)
The Fourier coefficients {gaa(ﬁnm\xaxé)} can be expressed in
terms of another set of coefficients {dua(knw!xsxé)} by

Bap Biw|xgxd) = 3 q,, Gywlxgxy) 8 o k) s,0k) (2.15)

where the real, orthogonal matrix §(£“) is given by

f:l k, o |
Scky) = -f:z £ o ; (2.16)
s & 3

The nonzero elements of the tensor d a(kam|x3x3), viz. du,d13

d22, d31, d33 have been calculated recently for a semi-infinite,

isotropic, elastic medium occupying the upper half-space x3>-059)

Consequently, all of the functions entering the right hand side of
Eq. (2.14) are known, and the scattered field can thus be calcu-
lated. We will return to this aspect of the problem below.

For the incident wave we assume a Rayleigh wave propagating
in the positive xl-direction. If we write the amplitude u§°)(§,m)
in the form

2 -3,

(0)(§,w) - u§°)(§§°)m|x3)e ‘ (2.17)

Y

with k(o) - (k(o), 0, 0), the amplitudes u§°)(§6°)m\x3) are found

to be

2c

2
-8, Xq c -8.X
u® @ulxg) = afe 3S-(1-R5) e "t (2.18a)
; t




u§°)(2.(°)m\x3) -0 c aialy (2.18b)

3 -B,x
o 6alng) = 1= Bp)" T -2} e |
2 (1- —'z)

where A is an arbitrary an@litude, cL and c, are the speeds of

longitudinal and transverse waves in the isotropic elastic mediunm,

respectively, and Cp is the speed of Rayleigh waves, which is 3
obtained from the equation ‘ i
& & 2 2 4
16(1 - —R,)(1 - ;52) (2 - ——5) : (2.19)
c
A t

The other quantities entering Eq. (2.18) are defined by

23 -
Cp \ % c
-« L P S s
. c c
2 t

The results expressed by Eqs. (2.17) and (2.18) have the

consequence that

w® @0 - - om? 1

4np Dl(x jw)

(O) (k|(° )w ‘ xos)

Iél)(;;xoslw) -

(o) 2(
2 ug (k m\x )
- AE%— 93 1(3)(x iXgglw) o (2.21)
4n“p Da(io.m)
where
! - -
Iéa)(; :xos|m) - Idzk“eik“° x"gca(ﬁnm|x3x03) X (2.22)

The resonance denominators Da(;o ;w) are evaluated in the Appen-
dix, so that it is only with the integrals Iéa)(§ :xos\w) that we

will be concerned in what follows. .
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III. The Scattered Displacement Field

In this section we obtain the asymptotic behavior of the
integrals Iza)(i ;xoslm) defined by Eq. (2.22), for X far from the
point (0, O ,xos). In the following section these results will
be used to obtain the elastic Poynting vector of the scattered
displacement field, and from the latter the attenuation length :
of Rayleigh waves due to scattering by mass defects. 3

Since the results of this section are central to the calcu- ;
lations in the rest of this paper, we present their derivation in
some detail.

We begin by substituting Eq. (2.15) into Eq. (2.22):

(8) (2. 2 iR, - % l
1@ xggle) - ﬁ Ja®x et lldw(k.m|x3x°3)sw(&.,)sva(f:“).
(3.1)
When the explicit expressions for the matrix elements (s (ﬁn)} 1

are employed in Eq. (3.1), the six integrals I(a)(i xos\w) which

are required for the determination of the scattered wave are

given by
V@ xggle) = 1, + 1, (3.2a) |
1@ xggle) = 1, - I (3.2b) |
(1)(3 Xoglw) = I, (3.2¢)

(3.2d)

(3.2e)




11

13 @;xgqlw) = Ig, (3.2¢)

TP VO,

where the simpler, auxiliary integrals Il' ‘s 18 are defined by

I - J dzk“eig";“coszwdnﬁkuw|x3x03) (3.3a)
1, - | dzklej‘:";“sinchd”(k.wlxsxos) (3.3b)
% Ig = I d2k|01E“';|cos¢d13(k|w|x3x03) (3.3¢c)
; I, = -' dzkueii"';“cosq;sincpdn(kuwlx:;xo:,) (3.3d)
Ig = : dzkueii"'§“c03¢sin¢d22(k|w[xaxos) (3.3e)
dzkueﬂi“';"sin@dls(klw|x3xo3) (3.31)
I, = f dzk&eiiu°;"008¢d31(kuw|x3x03) (3.3g)

(3.3h)

b=t
[ 2
'

I dzk“eigu'x“ dgq (kyw|xgx0q) .

| We next represent the vector X, as
X = xy (cospg, singg, 0) (3.4)

and evaluate the integrals over o in Eq. (3.3) in the limit of

large x; by the method of stationary phase. The results are

\

$4 -1 I
2 4 2

$ -1 % .
12 ~ (%E) e 1 s:l.n2¢s Jag (3.5b)

2n i -1 %
I3 ~ (;.-) e * cosgy Jyg : (3.5¢)




f

ol i
i e £ s R T

12

¥ -1 7
I, ~ (i—;‘) . ¥ sing cosgg J;, (3.5d)
? -1 7 |
15 ~ (%%) e 1 sinwscos¢s J22 (3.5e) ?
v
2 17
Ig ~ (;l1|-r e sing, Jyq (3.5¢)
3 -1 7
I, ~ (%;-!) « & cospy Jg; (3.58)
3 -1 1
By @ @T-ll R T | (3.5h)
where %
Ty ®ixgglw) = [ dkk%eikx"daa(kwlxsxos). (3.6)
o

In what follows we focus our attention on the integrals Jaa(i;xoslw).
The simplest of these is Jgg, and its evaluation illustrates

many of the ideas to be used in the evaluation of the remaining

integrals. From the results of Ref. 9 we have that
-

1 J'dk k” oikx)
o

-y (X3 “‘03)]

+ e 3.7
where N §
ay = (kz- !’-2) . (3.8)
Ct

The correct analytic continuation of oy from the region with k:>w/ct
to the region k‘<m/ct is achieved by taking the branch cut along

the negative real axis, and assuming w to have an infinitesimal,

positive imaginary part.




Each of the two integrals in Eq. (3.7) is of the form

A= a 5-* oA EH (3.9)
t
(o)
where 3

2 wz
£(k) = ikx; - R(k- =5 ’ : (3.10)

c

t

with R either |x3 - x3] or (x5 + X33). We expand f(k) about its
stationary point k° S

£(k) = £(ky) + % (k-k)ZM (k) + oo (3.11a)
where
N .. (3.11b)
t &} +R%)
3
£(k) = 1 E‘”;- (x% +R?) (3.11c)
3/2
Cy (xf-knz)
£9(k,) = 1o —~ : (3.11d)

Since ko is in the interval (o, «) (in fact]; it is in the interval
(o, w/ct)), we can replace the integration interval (o,= ) by the
infinite interval (- », =), in the limit of large x; and X3, with
an error which is of higher order than the terms we retain., In this

way we obtain

3/2
) c, (x2+R%) k2
g & (x2+R2) R
Kk cy i e Zw R2
A~ e I dk e
t ko e
@rxp? -1 g ta xf + %)

(xf + Rz)




We now make the assumption that Xo3 is small in comparison

with x = (x?-+xg) . The two values of (xf-rnz) can therefore be

expanded in powers of (x,./x) with the result that
03

i x xf

where the upper (lower) sign obtains when R = (x3 + xoa) (R-|x3-x03|).

We will retain the term linqgr in X043 in the exponential factor in
Eq. (3.12), but only the term of zeroth order in X;q in the deno-
minator of the prefactor. The justification for this assumption,
which it should be emphasized is convenient but not essential, is

the following. In the expressions (2,21) for the amplitudes of the
scattered displacement field the integrals Iéa)(§3303|W) appear
multiplied by the amplitude uéo)(ﬁfo)wlxos) of the incident Rayleigh
wave at the impurity site. From Eqs. (2.18) we see that these latter
amplitudes decay exponentially with increasing Xg3» SO that it is
only for x,; < a;l » Where at(< BL) is defined by Eq. (2.20), that
any significant scattéiing of the incident Rayleigh wave by 2 mass
defect can occur, In evaluating the scattered field far from the
impurity site, we assume that kox >> 1, where ko is the wave vector
of the incident Rayleigh wave and is comparable to the wave vectors
of the scattered waves, as we will see. If k x >> 1 and Xo3 S 5;1,
it follows that Xg3 << x, and the approximations we are making should
lead to little error in the scattered displacement field. To this
approximation we obtain finally for the integral Jzz(;;xo3|w) the
result that

w
& (2 rn:.)é -1J 135 % x

Tea IR l) w = s memm— 9 t w 73

22 e 03' -C-E X ¢ e cos ct X xoa . (3014)




It follows, therefore, that the integrals I, and I are given

asymptotically by

ik . x
Ta w80 siny 2 : cos (k X,,cos6_) (3.15a)
. Saans 5 N —x t*o3 s .
t
ik, x

t

Ig ~ - %g singpg cosgg g = cos(k x,,cos6;) , (3.15b)
t
where wé have used the fact that
xy = x sinfg , X3 = x cos fg (3.16)
and have defined
ky = o - . (3.17)

t
We now turn to the remaining integrals Jaa(i;xoslw) with o,p=1,3.
The Green's function daB(kw|x3x03) for «,f = 1,3 can be written as(g)

~a, |x5-xqq |
daa(kw]x3xo3) - dé;)(kw)e L

x —a.X
{d(a)(kw)e %703 + dsg)(kw)e b 03} +

-, | X=X o -a,X
d(:)(kw)e t el g Y0 {a‘5’<kw)e fos
~-a
a8 (ewye *o3 } (3.18)
where o, has been defined in Eq. (3.8), while

(3.19)

2y

. (3.20)




We have ractored out the coefficient r explicitly in Eq.
-1

because r

has a simple pole at k = kp = (w-+1o)/cR, where °R(< c

(3.18),

¢)

is the speed of Rayleigh surface waves. Explicit expressions for

i)

the coefficient functions d(B

The asymptotic forms of the two integrals contuining d(

(kw) 1 = 1,2,...,6 are given in Table I.

;’ (k)

and d(z)(kw) can be obtained immediately with the aid of the results

we have already obtained. In the former case it is necessary only

to replace Cy by C, in the preceding analysis. Thus we obtain

immediately that the integral
@™ * \
1) =, 3 ikxy (1) o0 "% %3
Jae (x,x03|w) = Idkk e daB (kw)e \T
o T

with (a,8 = 1,3) is given asymptotically by

(2ﬂx“)§ ¥ g ik, x =ik X3 COS g

xoél

I & *osfw"'I—z—'e e

2
5 sin es sinescoses
2
sinescoses cos es
where
w
e

22 v

In a similar fashion we find that the 1nte&ral
i’ \

\ - e
J(g) (x; Xg3 @) . J'dkki e 1EXI dﬁg)(kw)e ¢1%3
o
is given asymptotically by
(2"‘")i -1 7 eik ~ikex,

C¢

= X3 |

[

3coses

(3.21a)

(3.21b)

(3.22)

(3.23a)
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cosze’ -sinescoses
X i (3.23b)
2
-sine.cose' sin es
We turn now to the integrals which contain the factor rll

in their integrands, We will work out one of them explicitly, and
will simply quote the results for the remaining three. The integral

we consider is

. o ikxy - a,x, . % -a,x
Jég)(35303IW) - I dk e ’ L3 %: dég)(kw)e v (3.24)

o
To evaluate th%s integral in the limit of large x we divide the
range of integration (o, =) into two parts: (o, w/cL) and (w/cL, ®),
and consider the resulting two integrals separately.

A, The Contribution from the Interval (o, w/cL).

We evaluate the integral

w/cL i 3
-a,X
J(3a)(§;x03|w) - J‘ ke ' t3Kk

- . X
- a3) (kwye ¢ 93 (3.25)
o

r, ap

by the method of stationary phase. If we denote by ko the stationary
point of the function

2 wz * . » 2
£(k) = ikxy - (k-5 ) x5 = £(k ) + 3£ (k) (k= k)™ + ««o,
C
* (3.26)
we find that
. e
kO - EZ? <E—£ ( . 7&)
(k) = ik,x : ' (3.27b)
c 3
£7(ky) =~ -1 £ 5 (3.27¢)
X3

We therefore obtain for the large x limit of the integral (3.25)

.
:




3 %2
ik . x % w
gg‘)(x’xoahn) ~[_ d(3)(k )e '6 03]k e P J.dke
-
3 ik,x
p @Gmx)? -1 g O Ak Zogoonty
k3 e 'x
T 2c§ it
(1-2x231n29.)2-4x3s1nzescoses(1-xzsinzes)*
i &g .* - s g e e v
(1-2)\"sin Bs) +4)"sin escoses(l- 2\“sin 98)
-sinze sinf_cos®
s s s
X ’ (3.28)
2
-sinescoses cos es
where
A= ct/CL <1 . (3.29)

We have used the results- of Table I in obtaining this result.
B, The Contribution from the Interval (w/c&, ®)

To evaluate the contribution to J( )(x x03|w) from the integra-
tion range (w/cL) <k < », we regard k as a complex variable and

consider the contour 1ntegral

¢ 1kx“-a % -a,x
33D @xggle) = [ dxe A - d(%)(kw)e ot - B
S c&'
where the contour C is shovn 1n Fig.fl. - The integrand can be

4
made single valued inside and on this contour by a proper choice

of branch cuts. Then by employing the same arguments that were

used in Ref. 9 in connection with the evaluation of a similar

1 s o 4t




_—
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integral, in the limit as the circular portion of the contour
recedes to infinity the integral

o
ikx) - a,X, .4 ~a,Xx
(3b) (2. > 1= %73 k2 (3) 1703
Jop (X3Xqg |w) I dk e T, dgg (kw)e (3.31)

w/c&

is given by 2mi times the residue at the simple pole the integrand

possesses at the zero of r at k = kR - (w-rio)/cn. In the vicinity

+
of this pole we have the expansion(g)
1 2w 1
s e-SETZ-EY* analytic terms (3.32a)
" CRr R :
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Consequently, we obtain immediately that
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(3+33)
In the same way we obtain the asymptotic behaviors of the

remaining integrals. We omit the details and merely present the

results, We have that
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The results of this section when substituted into Eq. (2.21)
enable us to write the amplitude of the scattered displacement

field 3(3)(§,w) as the sum of four contributions:

g8 (&,0) = W E,0) + ﬁ(tp)(i.w) + 3@ ) + TB® () .

(3.38)
In Eq. (3.38) 34)(X,w) is the amplitude describing the scattering

of the incident Rayleigh wave into bulk longitudinal waves;

a(tP) (2. u) @(*S) (X,w)) is the amplitude for scattering into bulk
transverse waves of p-polarization (s-polarization); and ﬂ(n)(i,m)
is the amplitude for scattering into other Rayleigh waves. The ex-
plicit expressions for each of these amplitudes have the following

simple forms.
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(3.42b)
We now turn to the determination of the elastic Poynting
vector of the scattered displacement field, and from it the in-

verse attenuation length of a Rayleigh wave in the presence of

point defects.
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IV. Evaluation of the Inverse Attenuation Length

The first step in the evaluation of the inverse attenuation
length is the calculation of the elastic Poynting vector for the
incident and scattered waves. In their paper concerning the
attenuation of Rayleigh waves by surface roughness, Maradudin
and lills(g) derive the following expression for the complex
Poynting vector Ec of an elastic wave propagating in an isotropic

medium,

-‘

C i (Cl’ st C ) ’ (4.1)

where

du du
o - e 2 ) - 2 __g. _3_ o
¢y ipul{c!’(v u) 2c} 5%, - 5% )}

Ju du
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%oc {“2 3%, T 9%,/ T U3 \3x (4.3)

and the expressions for gg and gg can be obtained by cyclic
permutation of the subscripts in Eq. (4.2). We shall assume
that the displacement components u, vary with time as exp(-iwt),
so that u, ~ exp(iwt) and 4 = iwu,. Then Eq. (4,2) can be

rewritten as

du du
- «f 2 o 2( 2 3) >
€1 $iwp uy {cL(v u) - 2ci 5%, + 3%3 }

ou ou,
- 3iwp c% {u;(——axl 2) + ug ( + 3)}
2

(4.3)




We take up first the Poynting vector of the incident Rayleigh

Eqs. (2.17) and (2.18). We have taken the direction of propa-
gation to be the l-direction, so the only component of the

Poynting vector of interest is Cg(i). The latter is given

2 2
pctw -28,x -(B,+g,)X -28,.Xx )
¢ = [a)? ox {Cu TR Cet © gindn, M SR
(4.4)
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| e Cr
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(1- OR) 20t cL

We now consider the contributions to the Poynting vector

of the scattered wave associated with the different types of waves

constituting the latter.

wave, Zc(i). The displacement field for the incident wave is given by
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a) Scattering into longitudinal bulk waves

The scattered displacement field is given by Eq. (3.39a).
The derivatives with respect to the coordinate components are
found to be
(L) (2
33! (x,w) ika

axa X

2 uét)(i.w) (4.6)

in the limit x - ., Substituting this result into Eq. (4.3),

we obtain
c(L) = i 2 »* 2(-.-0 -2 2 )
Cl gf; u, {cp x-.u) ct(xzu2 + Xgug +

2 2
PW Cyp ( » *
+ % —3:;— ug (xpu; + xjuy) + ug(xgu; + xjug) p .
(4.7)

Again using Eq. (3.39a), we find that this contribution to the

Poynting vector can be written in the form

(Am)zwelu"l2 x

W = ———— . (4.8)
32r“pc, x

b) Scattering into p-polarized transverse bulk waves
For this case the derivatives of the scattered displacement
field components with respect to the coordinate components can

be written as

(tp) (3
du (x,w) ik x
—= g e s L TR (4.9)

X X
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in the limit x - », The corresponding contribution to the
Poynting vector can then be expressed as

2
om %] ulP | %
fc(tp) N o Wi rereiea . (4.10)
3

2m pCyX

c) Scattering into s-polarized transverse bulk waves.

In the limit x - », the expressions for the derivatives
of the scattered displacement field components with respect to
the coordinate components can be written in a form analogous to

Eq. (4.9), namely,

it @) tkgxy

= - Wil - S (4.11)

Using Eq. (3.41) we see that the Poynting vector from s-polarized

transverse bulk waves takes the form

26| (8)|2 =
(Am) x
2(e) (4qy - 0¥ (| (4.12)
8m peLx
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u?? (kg x )
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d) Scattering into other Rayleigh waves.
The scattered displacement field for this case is given by
Eq. (3.42). 1If we compare this result with that for the incident

displacement field given by Eqs. (2.17) and (2.18) and use the




Rayleigh wave dispersion relation, Eq. (2.19), we see that the

two displacement fields differ only in the replacement

ci
R
A -2 :f —{ (4.14)
R

and in the direction of propagation parallel to the surface.
Consequently, we can obtain the magnitude of the Poynting
vector by taking that for the incident Rayleigh wave, Eq. (4.4),
and making the replacement specified by Eq. (4.14).

The next step in the calculation of the inverse attenuation
length is to evaluate the energy stored per unit time in the
incident and scattered waves. For the incident wave, the

energy stored per unit time is given by(g) 3

dE
T " Ly fu3 G (4.15)
o

where L2 is the dimension of the sample parallel to the surface
and perpendicular to the direction of propagation. Substituting
Eq. (4.4) into Eq. (4.15), we obtain

dEo

2
t 2. 2 % [Cue St Cet
av IAl Lﬂpq{’%+ Be*Pe +ﬁ—t-}
(4.16)

Turning now to the energy stored per unit time in the scattered
wave, we present results for each type of scattered wave separately.
For the longitudinal scattered wave, the energy stored per unit

time is given by
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Using Eq. (4.8), this result becomes
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The integration over p  can be carried out with the aid of

B e el it b e

Eq. (3.39b) yielding
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An expression analogous to Eq. (4.17) can be applied to the case
of p-polarized transverse scattered waves. Using Eq. (4.10) for
the Poynting vector and Eq. (3.40b) for ugp), we obtain for the

energy stored per unit time
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For the case of s-polarized transverse scattered waves, we
use Eqs. (4.13) and (4.17) and find for the energy stored per
unit time

“§.°) (EII(O)“’ | x,3) |2 Sink.x 3

dlé') ) 2,6
- - LA_L5L_ (4.21)
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Finally, for the case of scattering into other Rayleigh

waves, we can write the energy stored per unit time in the form

d Sw \
;{—‘ - x f- dxg j W - (4.22)
o (e}

Using Eq. (4.4) and the replacement specified by Eq. (4.14), we

-

carry out the 1ntegfation over xq and obtain

6 2n
dEq Ct 2
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where

The integration over g can be accomplished with the aid of

Eq. (3.42b) to yield the result
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We are now in a position to calculate the various contri-
butions to the inverse attenuation lengths. We consider separately
the two cases of mass defects localized at the surface Xg = 0 and
of mass defects uniformly distributed throughout the crystal.

Turning first to the case of defects localized at the surface,
we consider a rectangular patch of surface with dimensions L1 and
Lz,respectively, parallel and perpendicular to the direction of
propagation of the incident surface wave and with ng defects per
unit area. The fraction of the incident energy radiated into
longitudinal bulk waves is given by

dx& dEo
f& = Likng 35/ Gt - (4.26)
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The corresponding contribution to the inverse attenuation length

o l =2,/ (4.27)
P2 X S .

For defects at the surface, x 4 = 0, we find from Egs. (2.18):
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If we use these results and set X3 equal to zero in Egs. (3.39¢)
and (3.39d) for Fl(es,xos) and (Fz(es,xos) , we can simplify Eq. (4.19)

for dE,/dt and obtain the result
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In a similar fashion, the contribution of p-polarized

transverse bulk waves to the inverse attenuation length can

be obtained from Eqs. (4.20), and (4.26) - (4.29) with the result
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The contributions of s-polarized transverse bulk waves and of
Rayleigh waves to the inverse attenuation length can be evaluated
in closed form using Eqs. (4.21), (4.25), and (4.26) - (4.29).

The results are, respectively,
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We now turn our attention to the case where the mass defects
are distributed uniformly throughout the crystal. It is now
necessary to multiply the energy stored per unit time in the
scattered wave by the concentration of defects ny, and to integrate
over X q. The contribution to the inverse attenuation length from

longitudinal bulk waves is then given by

{--]
) - in j dxo3 M 1 (4.34)
dEo/dt dt

1
L

The integral over X,3 can be evaluated analytically if we ignore
the resonance situation and set Dl(io;w) = D3(§°;w) = 1. However,
the results are long and cumbersome, and one is still left with
the integral over es to be done numerically. We content ourselves
with presenting expressions which give the order of magnitude of

the various contributions:
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V. Discussion

When the mass defects are localized at the surface, our
results for the various contributions to the inverse attenuation
length of Rayleigh waves are proportional to the square of the
change in mass introduced by the defect and to the fifth power
of the frequency. In this respect our results are in agreement

with those of Steg and Klemens'?® (5,6)

we have also obtained resonance behavior (see Appendix). However,

our resonance behavior is somewhat different from that found by
Sakuma. He found resonanceslwhen the mass defect corresponds to
an impurity atom lighter than the atom of the host lattice it
replaces. We find the opposite situation--i.e., resonances when
the impurity atom is heavier than the host lattice atom. We
believe our result is more reasonable physically than that of
Sakuma. A light impurity, under proper conditions, will lead to
a localized impurity mode whose frequency lies above the allowed
band of frequencies for the bulk crystal. The impurity mode
frequency therefore lies outside the range of Rayleigh wave
frequencies. It is difficult to visualize how there can be a
strong resonant interaction between a Rayleigh wave and an
impurity mode whose frequency cannot equal that of the Rayleigh
wave. A heavy ‘impurity, on the other hand, can lead to a
resonance mode whose frequency lies within the allowed band

for the bulk crystal. In general, there will be no problem

in finding a Rayleigh wave whose frequency is equal to that

of the resonance mode. We interpret the peaks in the
\

and of Sakuma. Like Sakuma,

ot




quantities |D]_(o;m)|-2 and |D3(o;m)|.2 to be at the resonance
mode frequencies of the heavy mass defect. The peaks do not
occur at the same frequency because the impurity mode in which
the motion of the defect is perpendicular to the surface lies
at a lower frequency than does the mode in which the motion of the
defect is parallel to the surface.
It is of interest to evaluate the order of magnitude of the

inverse attenuation length. If we consider silicon with

3 1

o =2.5gmem >, cg = 4.9 x 10° em sec™ !, ¢, = 5.3 «x 105 cm sec”!,

t
and cL'- 9.5 x 105 cm sec_l, and assume that the defects are

localized at the surface with ng - 1012cm"2 and Am = 10‘23 gm,

10 L) 15

we obtain for » = 107 " Hz the values ¢ = 3.1 x 10 cm.,

15 (ts)

L) 221 x 1080 cm, 2 15

cm, and L(R)- 0.77 x 1015cm.

= 2.1 x 10
In these calculations, the integrals in Eqs. (4.30) and (4.31) have
been taken equal to unity. We see that for the defect concentration
and frequency considered, the attenuation length is extremely 1ong.»
If we increase the frequency by a factor of 1000 to 1013 Hz, we
than #150 tY? = 3.1 0on, £ 31 e, t'™ 3.1 ca, and
L(R) = 0.77 cm. These lengths are moderately short, but the
frequency is much higher than those used in surface wave devices.

In the above calculations, the resonances have been neglected.
Including the resonances could decrease the attenuation lengths

by an order of magnitude or more at the resonance frequencies.

One can, of course, also decrease the attecnuation length by

increasing the mass change Am or the concentration ng of defects.

In typical situations, however, it seems likely that scattering by
(9)

surface roughness will be more significant in determining the

attenuation length than will scattering by mass defects.
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Appendix

In this Appendix we evaluate the resonance denominators
Db(ig ;w) (¢ = 1,2,3) which enter the expression for the scattered
displacement field, Eq. (2.12), and which are defined in Eq. (2.11).
We have that

Amz

-
Da(x° Tw) =1 + 5

¥ % A (A.1)

Gaa(xo ' Xq

We begin by showing that Gba(; ,} ;w) is diagonal in « and B,
and that Gy, (X , X ;w) = Gyp(X , X ;w) # Gg5(X ,X;w). For this
purpose we first note that the Green's function Gaa(§ , X' ;) can
be written as the sum of a contribution G:B(; ,i' s w), which is
the Green's function for an infinitely extended medium, and a
contribution AGyg (X , X ; w), which reflects the semi-infinite
nature of the elastic medium and ensures that the surface x3'-0
1s stress-free. The Green's function G:B(§ ,*' ;W) divergeé as
X 2', so that it must be treated separately and specially. It

is to this function that we turn first.
The Green's function GGB(; ,2' ; w) has the Fourier expansion
2 - -, -,
+ 20, -l GO o1k - (X = xy)

G@B(x y X© 5 w) I ?;;%g Saa(ﬁuw|x3x3 e ’ (A.2)
where the Fourier coefficients in turn are expressible in terms
of simpler functions daa(k"mlxaxé), which deﬁend on ﬁu only
through its magnitude, through Eqs. (2.13) and (2.14). The part

of dua(kuwlxsxé) which gives rise to the Green's function

G;S(; , %' ;w) has as its only nonzero elements( 9 ’
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k -
d;3(k“w|x3xé) - ——Lqé [Ee t'3 A et ] a (A.3e)
2dtm
The functions QL and dt appearing in these expressions are de-
fined by
2 3
2
at,& = (k“ - g ) ky > cw (A.4a)
ct,L t,4
2 3
= =i (%— - k||2> k" < = 2 . (A.4Db)
Ct,2 b
H

These definitions can be combined into the single equation

3
2

t,L

where n is a positive infinitesimal, and the branch cut in the

definition of the square root is along the negative real axis.
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With the aid of the representations

- |xq = xo dk_ 1ik_(x, - x.)
‘|3x3'_I_ﬁ§.zx3 %3’ 2o

(A.6a)
a4k
-clx - x2| dk_  ik_(x, = x1) 21k
sgn (x3-x3) e R --I-ﬁae'z 3 3—,——35 (A.6b)
a’+
z

and Eqs. (A.2), (A.3), (2.15) and (2.16) we obtain for the ele-

ments of the Green's function G a(x x! jw):
\
3 -0 -00 4
L -3 -, - - d k . - 1
o“(x,x P w) I'(_;ﬂ';?° { ( 2_‘“‘2 kz-“’§>+
| ot
O R
- S |
o} k?-g_, (K.7

In the limit as X < X’ this integral diverges at the upper
limit. In order to obtain a finite result in this limit we must
impose a cut off on the integral. We do so by confining the inte~-
gration to the interior of a sphere of radius kD' the Debye
lphero: Such a cut off arises naturally in a lattice theory,
where kD is of the order of the rocipro%al of a lattice parameter,
but it has to be imposed in this fashion in a continuum theory.

If we utilize the -phorical l}mmetry of the problem, we obtain

o . 6
o.’(?:.':%;..,)-- j'dkk —,—-—-,-+-,21L}
v x?-ty gl -
: L)
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where we have used the fact that the g{equency w has an infinitesi-

mal positive imaginary part (see Eq. (Ays)).

- -0(

We now turn to the contribution to D (xo sw) from AG a(x ; Tw).

The latter is given by

-3 -
a(x X jw) = 2 ‘(’2::") om“ RS )Aduv(knwlxsxé) X
X suad‘“’ Sy ki) (A.9)

where Aduv(k“mlxaxé) is that part of qﬂv(klwlxaxé) which arises
from the semi-infinite nature of the elastic medium. It depends
on the two-dimensional wave vector ‘. only through its magnitude.
We now set X = X' and note that the o+1y terms that survive the
integration in Eq. (A.9) are those whose integrands are even
functions of k1 and kz. In this way we obtain for the only
nonzero elements of Aﬁh'(i X w)

2

(A.10a)
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BGge (X, X jw) = [ ‘(’2:) {k28dy, Gyl xgxg) + k2ndy, k0l xgxg)}
(A.10b)

Gan(® ., X ;uw) = I i TR (k A

AGga (X , X ; w) pre 33 uwlxaxa) : (A.10c)

On carrying out the angular integrations in these expressions we

are left with the results that

¢

=

D
Lﬂ i dk||k||{Ad11(k||w|x3x3) + Ad22(k||u)|x3x3)} (A.11la)
kp
AGss(; y X W) - % J; dky k||Ad33(k||w‘x3x3) . (A.11b)

We have again introduced a cut off on the integrals over k; to
render them convergent at the upper limit.

The expressions for Adaa(kuwlxsxa) obtained from Appendix A
of Ref. 9 are

2 -2a, x -20 x
Adu(kuw|x3x3) - - —15“—2 ;}- [r_e 73 + €r_e t3 +
2“&“’ +
-(a, +a )x
Sy S (A.12a)
-2atx3
Adoo (Kj 0] XoX,) = = —2— ¢ (A.12b)
22 373 2 .
2u4cy
Ad33(k"m|x3 gyt = -—l—! [r e + €r_e 4+
2¢tm
-(a, + @, )x
MG Gan, AN 3] (A.12¢)




The. functions GL and L have been defined in Eqs. (A.4) - (A.5).

The functions T and € are given by

o, -4aak“2:(a2+k||2)2
Lt t 4 t

 Sabucy wabi r . (kjw) = 5 . (A.13)
k) " 4¢tQL (dt + k%)

On substituting Egs. (A.12) - (A.13) into Eqs. (A.11) we obtain
the results that

3 1
k
- -0. = -» -0. = D
AGn(x ,y X s w) AG22(x , X W) —-—!—2£ du x
16mnt ¢

« { —= [ (2u-L2):+4uﬁj2/u-)\£ (e'z"“"‘ ¢ kp¥g

LonZc2  (2u-¢2) -aufu- c2fu-n2c?

-2Ju- C! ka3) 5

. Ju;?’/x O e ol

Lah G U ) by

(2u-¢2) - awu-C4u-2%?

(A.14)

& ;2 e-z/u- C2 knxa}

u-=¢

2
u [(2\1-;22 +4M1—L2~/;-12ﬁ
Ja=¢2 (2u-¢?) -afu-cd-r%?

T SRR AT

3 1
AG (; §°w) --—kn—idu
33 Wit 8 2C2

¥4

+

X
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& &/u-j_zz,./u- 222 (2u - ¢2) e‘("“' LR )kn"3] .
(2u-¢2) - avfu- -2
(A.15)

In obtaining these expressions we have introduced the notation

¢ c_t'E;n ) wgmeky . A=eye, . (A16)

Although the integrals in Eqs. (A.14) and (A.15) can be
evaluated analytically when Xg = 0, the results are cumbersome.
We have therefore evaluated these integrals numerically, as
functions of (m/mt), for several values of A and ka3' Simpson's
rule was used, with 100 divisions of the integration interval
(0,1). A value of 10-3wt was chosen for the quantity n, and the
integrations were carried out in complex arithmetic. The
square roots (u-cz)i and (u--kzcz)i were always evaluated in
such a way that their real parts were positive, which assured the
satisfaction of Eq. (A.4). The results of these calculations
were combined with that given by Eq. (A.8), and substituted into
Eq. (A.1) to yileld Da(§°;w). Results for |D1(§°;w)|-2 and
|D3(;°;w)|-2 as functions of w are presented in Figs. 2 and 3
for several different values of ka3 with » = 1//3 and Amkg/p-so.
In each of these figures, we see that there ;s a resonance peak
whose frequency at the maximum increases as the impurity is moved
from the surface into the bulk. At the surface, the peak frequency
is somewhat smaller for the impurity motion perpendicular to the

surface then parallel to the surface. This indicates that the
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. effective force constant governing the impurity motion perpendi-
cular to the sﬁrface is less than that governing the motion
parallel to the surface. A similar effect is found(1%) in the

mean square displacements of surface atoms.




TABLE I. g The coefficient functions dé;)(kw) appearing in

Eq. (3.18). The factor ¢ is ¢ = bcdt/kz.

2
(1) k
s ) n e ey

QLW

2

afP (k) - Sk

d(3)(kw) Rl k'r.
af ) () = - ko
a{3 ) = - -

i d](_g)(hl)) e €k“r.

d(l)(kw) - - Z"’ sgn (X3 =X;3)

d(z) (kw) = ;t:_k! sgn (xg = X;4)

( ) ik
dy3” (ky) = =
2y

mir




a§3 ()

a$3 Caw)
a$®? ()
a$3’ (aw)
a$2) (kw)

a$3) )
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« Hg. 1.

Fig. 2.

Fig. 3.

Figure Captions

Contour for the evaluation of the integral in
Eq. (3.30).

Resonance factor as a function of frequency for
impurity motion parallel to the surface.

Resonance factor as a function of frequency for

impurity motion perpendicular to the surface.

da




T *3ya




kpXs

0.0
0.5

8.0

1L

|

~

0

n

<

M

N

1 (mtE€xO) g /I woLov4 3oNVNOSIY

e

0.0

Fig. 2

B e ———




-

kpXz _

b Bt et fs

w/eikp

0.0

1 | | L 1 |
© 0 < M 3 - o

,1(m*€x9)€a| /i ¥OLOV4 IINVNOSIX

Fig,




